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A numerical basis for the accurate representation
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We present a method for the accurate calculation of the complete spectrum of the
Schrödinger equation in terms of B-splines polynomial basis. The method is capable to
represent numerically the bound and continuum spectrum of complex atomic systems.
The theoretical method is discussed, and an application to hydrogenic Hamiltonian is
given.

KEY WORDS: Schrödinger equation, B splines, photoionization

AMS subject classification: 65705, 34L40

1. Bound and continuum states of atomic systems: an overview

In the case of an atom with one electron outside a closed shell, the solution
of the stationary Schrödinger equation (SE) can proceed as follows: Exploiting
the spherical symmetry of the potential, the wavefunction of the electron is writ-
ten as φεlmms

(r) = (1/r)Pεl(r)Ylm(θ, φ)σms
, with Ylm(θ, φ) the usual spherical har-

monics and σms
, the spin-function. Then the radial SE may be written as:

[hl(r) − ε]Pεl(r) =
[
−1

2
d2

dr2
− l(l + 1)

2r2
+ Vl(r) − ε

]
Pεl(r) = 0 (1)

The above equation is supplemented with the appropriate boundary condi-
tions (BC) for the bound and the continuum states which, for convential poten-
tials rVl(r) → Zeff , r → ∞, are given by the following relations:

Pε/kl(r → 0) → Cε/klr
l+1 → 0 (2)

while for that the infinity the asymptotic conditions read:

Pεl(r → ∞) → Aεle
−√−2εr , ε � 0

Pkl(r → ∞) → aFkl(r) + bGkl(r) = Aεl sin
[
kr − l

π

2
+ φC + δkl

]
, ε � 0 (3)
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with Fkl(r), Gkl(r) being the regular and irregular Coulomb function, k being
the momentum vector of the continuum state related with the energy ε = k2/2,
φC(r) the Coulomb phase shift (long-range phase shift) and δkl(r) being the scat-
tering phase shift (short-range), which basically reflects the deviation of the true
potential ‘seen’ by the outgoing electron Vl(r) from the Coulomb potential VC =
− Zeff/r. Given that, Vl(r) → VCr → ∞ it is justified the distinction between
‘long-range’ or ‘Coulomb’ and ‘short-range’ or ‘scattering’ phase shift. The Cou-
lomb phase shift is known analytically and given by:

φC(r) = Zeff

k
ln(2kr) + arg�

(
l + 1 − i

Zeff

k

)
. (4)

The amplitudes Aε/kl, Cε/k are determined through the appropriate normaliza-
tion of the bound and continuum solutions. Note that we use the notation
Pεl(r), Pkl(r) for the bound and continuum states, respectively. The above asymp-
totic limits holds unchanged for the case of negative ions. Then the asymptotic
charge is zero (φC = 0) and the asymptotic limit of Pkl(r) coincides with a linear
combination of Bessel functions.

At this point is obvious that the whole effort for the solution of the SE
is reduced to the determination of the radial wavefunction Pε/kl(r). Moreover,
the implementation of the above boundary conditions (BC) ensures the following
orthonormalization properties of the solutions:

〈Pnl|Pml〉 = δnm,

〈Pεl|Pε′l〉 = δ(ε − ε′).

1.1. Rayleigh-Ritz-Galerkin approach

Expanding the radial wavefunctions in a finite basis set (Gaussian, Slater,
B-splines,. . . ), defined in an interval [0, R], 0 < R < ∞, (for Gaussian and Slater
basis, R extends to infinity) as:

Pεl(r) =
ns∑

i=1

C
(εl)
i ui(r), (5)

where, ns is the number of basis ui(r). Substituting this expansion to the radial
SE (1), and taking the variational condition in respect of the coefficients Ci ,
δ〈uj (r)|(hl(r)− ε)| ∑ns

i C
(εl)
i ui(r)〉 = 0 leads to the following matrix equations for

the coefficients Cεl = (c
(εl)

0 , c
(εl)

1 , . . . , c(εl)
ns

):

Al(ε) · C = [hl − εU] · Cεl = 0. (6)
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The matrix hl is the representation of the radial Hamiltonian on the finite
basis, and U the overlap matrix, defined by,

hij ≡ 〈ui |hl(r)|uj 〉 =
∫ R

0
drui(r)hl(r)uj (r), (7)

uij ≡ < ui |uj >=
∫ R

0
drui(r)uj (r). (8)

The boundary conditions for the bound states define a two-point boundary
value problem, whose solution give discrete eigenfunctions and eigenvalue ener-
gies, whereas the boundary conditions for the continuum states define an ini-
tial value problem for each arbitrary pre-selected energy ε = k2/2. More over, the
‘box’ hamiltonian hl, for the case that R has finite value, is well known that is
non-hermitian due to kinetic term −d2

/dr2.

hij = 1
2
〈u′

i |u′
j 〉 − 〈ui | l(l + 1)

2r2
+ Vl(r)|uj 〉 +

[
1
2
ui(r)u

′
j (r)

]R

0
= ĥij + hS

ij , (9)

where ĥ is the symmetric part of the Hamiltonian and hS is the surface term,
vanishing in the limit R → ∞, with algebraic form given by the Bloch operator:

hS = 1
2
δ(r)

∂

∂r
(r·). (10)

2. Artificial boundary conditions: αPε/kl(R) + βP ′
ε/kl(R) = 0

Especially for numerical computations one has to introduce the finite value
R, thus effectively replacing the infinity for a practical investigation of the prob-
lem. The most reasonable choice for the value of this finite boundary R is to be
so large that its finite value to introduce negligible error for all practical purposes
of the specific problem under question. An alternative approach is to impose
the boundary conditions to this artificial boundary, resulting to an approxi-
mate finite representation of the true hamiltonian inside this boundary spherical
box. Those artificial boundary conditions provide the necessary link between the
‘interior’ and the ‘exterior’ region. A set of homogeneous BC may be the follow-
ing:

αPε/kl(R) + βP ′
ε/kl(R) = 0. (11)

For specific values of α and β the constraint (11) selects from the total
spectrum of the allowed wavefunctions (bound and continuum) those that this
constraint is satisfied. For states with negative energy ε ≤ 0 (bound states),
which the allowed spectrum is already discrete, it forces a change in the func-
tion shape (prominent, near the boundaries) together with an energy shift. For
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states, with positive energy ε � 0 (scattering states), this constraint makes the
continuous spectrum, a denumerably infinite subset of the physical one, since
certain continuum discrete states are obtained. Different sets of discrete wave-
functions may be obtained depending on the value of α, β, R parameters. For
example, enlargement of the boundary distance R makes the continuum spec-
trum to crowd more densely toward the limiting value ε → 0. Moving the arti-
ficial boundaries in higher distances, the bound states, eventually, are influenced
less and less.

2.1. Bound spectrum: fixed Boundary Conditions: β = 0 ⇔ Pε/kl(R) = 0

Assuming as BC β = 0 we select the wavefunctions having a node on the
boundary Pε/kl(R) = 0. Physically this is equivalent to assuming a potential of
infinite height at the boundaries. This eliminates the surface term, thus trans-
forming the matrix equations (6) to a generalized symmetric eigenvalue problem,
where the eigenvalues obtained simultaneously with the corresponding eigenvec-
tors (ε

(l)
i , Cεi l).

Obtaining the continuum discretized eigenstates this way, degeneracy
between continua with different angular quantum number is lost. More over the
density of the spectrum is completely uncontrolable and it mainly depends on
the box size (R).

If, however, a sufficiently dense discrete spectrum of positive solutions
has been obtained, there are many physical problems, for which this lack of
degeneracy either does not pose any serious obstacle in the calculations or can
be circumvented through certain methods (i.e. interpolation within the energy
spectrum. This approach has been followed in a series of works last decade in
large variety of problems [1–4].

In figure 1 we show the hydrogen (Zeff = 1) 1s,2s,2p,3p states obtained
assuming the fixed boundaries approach.

3. Continuum spectrum: free boundary conditions method

While for the continuum spectrum we also can assume the fixed bound-
aries 1method we have followed an alternate method which we call free bound-
ary method. In this approach we ask for scattering solutions at a certain energy
ε with no assumed boundary conditions. In this case, we introduce an artifi-
cial ‘boundary’ at distance R for numerical convenience which causes not any
changes neither in the energy eigenvalues of the physical Hamiltonian or in the
eigenfunctions themselves.

Considering now again the initial matrix equations (6), we note that we
have an non-Hermitian matrix hl as well as an overlap matrix U to be calculated.
We ask solutions at certain energy position ε, a choice that makes equations (6)
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Figure 1. Hydrogen radial bound states.

a system of inhomogeneous linear equations [5]:

(hl − εU)Cεl = 0. (12)

At this point we introduce the B-spline polynomials B
ks

i i = 1, 2, . . . , ns , of
order ks , defined in an interval [0, R] on a sequence of knotpoints t [i] ≤ t [i + 1],
i = 0, 1, . . . , ns + ks , where t [0] = t [1] = ..t [ks ] = 0 and t [ns + 1] = t [ns + 2]
= .. = t [ns + ks ] = R [6]. In this representation the box-hamiltonian and the
overlap matrix elements are given from relations as in equations (7, 8) with the
obvious substitution ui → Bi (U → B). The matrix representation the surface
term hS is given by:

hS
ij = −(1/2)Bi(R)B ′

j (R). (13)

By definition of the B-spline basis, the only non-zero B-splines functions
at the boundaries are the first B-spline B1(0) = 1 and the last one Bns

(R) = 1.
Since the solutions should satisfy Pε/kl(0) = 0 we exclude from the basis set the
B-spline the first B-spline B1(r). Furthermore the surface term is reduced to
involve only the terms with i = ns . Finally from the properties of B-splines the
relations B ′

ns
(R) = −B ′

ns−1(R) = (ks−1)/tS, tS ≡ t [ns+1]−t [ns ] are obtained. Then
the only non-vanishing elements of the B-splines representation of the Bloch
operator are the following:

hS
nsns

= −hS
nsns−1 = ks − 1

tS
≡ hS. (14)
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This is a clearly unsymmetric matrix since hns−1ns
= 0 
= hnsns−1. In the

B-spline case, the degree of this non-symmetricity can be controlled by varying
certain parameters of the basis definition (ns, ks) and the knot sequence. It is
worth noting that this ‘non-hermiticity’ of the Hamiltonian is independent on
the box radius R. It also favorables B-spline of lower order ks . The B-splines
Hamiltonian now is given by a non-hermitian matrix of the form:

hl =




h11 h12 . . . h1(ns−1) h1ns

. . . . . . . . . . . . . . .

h(ns−1)1 h(ns−1)2 . . . . . . h(ns−1)ns

hns1 hns2 . . . h(ns−1)ns
+ hS hnsns


 . (15)

Assuming equations (12) and (15) we rewrite the non-linear system of equa-
tions as:

(ĥl − εB)Cεl = C0, (16)

where C0 ≡ (0, 0, . . . ., 0, 1) and Cεl are new set of coefficients which related
with those of Equation (12), through the relation Cεl(new) = Cεl(old)/(hSCns−1
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Figure 2. Radial continuum states for different kinetic energies. The box radius was R = 30, the
number of B-splines ns = 92 and the order was ks = 9. The knot sequence was chosen to be

sine-like [4].
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(old)). Our effort is to eliminate the problem of non-hermiticity of the box-
Hamiltonian. For this, we have rewritten the matrix equations keeping only the
hermitian part of the hamiltonian and making the system of linear equations
non-homogeneous. The non-Hermitian part of the Hamiltonian, which depends
on the product hS ·Cns−1, has been moved to the right-hand side (RHS) of those
equations, which in principle is unknown. Dividing both parts of equations by
the arbitrary number hS ·CnS−1 we fix the RHS as given by C0. This way we have
eliminated the problem of non-hermiticity of the box-Hamiltonian with the cost
that we are only able to determine a solution vector of arbitrary normalization.
The complete determination of the solution vector in the box comes later on,
applying the normalization rules that the bound and continuum states should
satisfy, according quantum mechanical scattering theory [7].

Normalized continuum states for different kinetic photoelectron energies
are shown in figure 2.

4. Normalization of the continuum states (WKB approach)

The procedure, followed for the renormalization of the calculated contin-
uum states, is based to the well known WKB approximation [7]. For a radial SE
in a central potential Vl(r) = −Zeff/r + ul(r), the normalized solutions, P(r), is
known that can be written as:

P(r) =
√

2
πζ(r)

sin φ(r), (17)

where in the asymptotic region of P(r → ∞) the function ζ(r) satisfies the equa-
tion:

ζ 2(r) = w(r) + ζ 1/2 d
dr

(ζ−1/2), (18)

w(r) = k2/2 − l(l + 1)

2r2
− Zeff

r
+ ul(r). (19)

The effective charge Zeff is equal to zero (Zeff = 0) for negative ions and
unity (Zeff = + 1) for neutral atomic systems. The ‘distorted’ potential ul(r)

behaves asymptotically as ul(r → ∞) → 0. The phase φ(r) of the wavefunction
is given by:

φ(r) = φC(r) + δkl =
∫ ro

0
drζ(r),

where we have separated the phase shift into the Coulombing (long-range) (φC)
and the correlation (short-range) (δkl) part.

Various, similar in spirit, methods have been appeared in the literature,
for the solution of the above equations. In our case, we evaluate all the above
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equations in the region about r → R. The numerical calculation of ζ(r) is per-
formed through a second-order analytical iterative expansion. The details of this
expansion is given in the article by Burgess [7].

Being able to calculate the function ζ(r), we assume that the normalized
solution Pkl(r) differs by the calculated one P̄kl(r) by a constant in space factor:

Pkl(r) = AklP̄kl(r). (20)

In the asymptotic region, ( r ∼ R ) we force the normalized solution Pkl(r)

to coincide with the following combination of functions:

Pkl(r) = aklFkl(r) + bklGkl(r), r → R, (21)

where Fkl(r), Gkl(r) are the energy-normalized regular and irregular Coulomb
functions:

Fkl(r) =
√

2
πζ(r)

sin φ(r),

Gkl(r) =
√

2
πζ(r)

cos φ(r).

Evaluating the equations (17,19,20,21) at the points r1, r2 ∼ R, we find for
the short-range phase shift:

Kkl = tan δkl = bkl

akl

= P̄kl(r2)F (r1) − P̄kl(r1)F (r2)

P̄kl(r1)G(r1) − P̄kl(r2)G(r1)
. (22)

Having calculated the short-range phase shift, we obtain the normalization
factor from equations(17,20,22) as:

Akl ≡
√

2/πζ(R) sin[φ(R) + δkl]

P̄kl(R)
.

The WKB, unormalized and the normalized radial states for εk = 1.7733,
are shown in figure 3.

At the end of this calculational procedure, we have calculated the two
important quantities: (a) the renormalization factor that transforms the calcu-
lated wavefunctions to an energy-normalized wavefunctions and (b) the short-
range scattering phase shift. The latter is meaningless for the case of hydrogenic
one-electron wave functions (always δkl = 0).

Note that the procedure remains practically the same in the multichannel
case. In this case, the outgoing electron moves (′2′) in the combined central field
of the nucleus plus the Coulombing field of the other electron (′1′). The radial
potential Vl(r) is then a non-local potential which its asymptotic limit deviates
from the simple electron–nucleus coulombing term Zeff/r2 by the multipole elec-
tron–electron correlation multipoles v(k; l1l2)/rk

12, k = 1, 2, . . . .
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Figure 3. Hydrogen continuum radial state for l = 1, εk = 0.06517 a.u. For 0 < r < R = 200
a.u. the, un-normalized (5) and normalized (20) in energy, radial state is plotted as produced by the

calculation. For the region R < r < 400 a.u. the WKB asymptotic expansion has been used.

5. Conclusion

In this paper, we have demonstrated the use of the B-splines polyno-
mial basis for the numerical calculation of bound and continuum spectrum of
atomic Hamiltonians. Especially for the continuum spectrum, we have employed
a method that is able to calculate with high accuracy the eigenstates for a large
portion of the space. The method is straightforward extensible to more complex
atomic systems having more than one electrons.
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